资源类型

期刊论文 214

年份

2023 15

2022 17

2021 14

2020 16

2019 16

2018 12

2017 13

2016 5

2015 8

2014 9

2013 19

2012 5

2011 10

2010 11

2009 8

2008 11

2007 6

2005 4

2004 1

2003 3

展开 ︾

关键词

固体氧化物燃料电池 8

燃料电池 8

生物质 4

新能源 3

氢能 3

SOFC 2

催化剂 2

双极板 2

替代燃料 2

柴油 2

核燃料循环 2

氢燃料电池 2

清洁燃料 2

燃烧特性 2

碳基燃料 2

2035 1

300 M钢 1

CO2 加氢 1

MnAl 1

展开 ︾

检索范围:

排序: 展示方式:

Numerical investigation of the effects of fuel spray type on the interaction of fuel spray and hot porous

ZHAO Zhiguo, XIE Maozhao

《能源前沿(英文)》 2008年 第2卷 第1期   页码 59-65 doi: 10.1007/s11708-008-0022-5

摘要: The interaction between two types of fuel spray and a hot porous medium is studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incorporated with an impingement model, a heat transfer model and a linearized instability sheet atomization (LISA) model to model the hollow cone spray. An evaporating fuel spray impingement on a hot plane surface was simulated under conditions of experiments performed by Senda to validate the reasonability of the KIVA-3V code. The numerical results conform well with experimental data for spray radius in the liquid and the vapor phases. Computational results on the interaction of two types of the fuel spray and the hot porous medium show that the fuel spray can be split, which provides conditions for quick evaporation of fuel droplets and mixing of fuel vapor with air. The possibility of fuel droplets from hollow cone spray crossing the porous medium reduces compared with that from solid cone spray, with the same initial kinetic energy of fuel droplets in both injection types.

关键词: improved version     impingement     atomization     hollow     radius    

Spray characteristics and controlling mechanism of fuel containing CO

Zhen HUANG, Jin XIAO, Xinqi QIAO, Gaozhi JIANG, Yiming SHAO, Seiichi SHIGA, Yasuhiro DAISHO

《能源前沿(英文)》 2012年 第6卷 第1期   页码 80-88 doi: 10.1007/s11708-012-0180-3

摘要: This paper presents studies of spray characteristics and controlling mechanism of fuel containing CO . Using diesel fuel containing CO gas, experiments were conducted on diesel hole-type nozzles and simple nozzles. The steady spray and transient spray characteristics were observed and measured by instantaneous shadowgraphy, high-speed photography, phase Doppler anemometry (PDA) and LDSA respectively. The effects of CO concentration in the fuel, the injection pressure, the nozzle ratio, surrounding gas pressure and temperature on the atomization behavior and spray pattern were evaluated. The results show that the injection of fuel containing CO can greatly improve the atomization and produce a parabolic-shaped spray; and the CO gas concentration, surrounding gas pressure, temperature and nozzle configuration have dominant influences on spray characteristics of the fuel containing CO . New insight into the controlling mechanism of atomization of the fuel containing CO was provided.

关键词: spray characteristics     fuel atomization     fuel containing CO2    

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1268-1280 doi: 10.1007/s11705-022-2143-5

摘要: The micro-nano composite structure can endow separation membranes with special surface properties, but it often has the problems of inefficient preparation process and poor structural stability. In this work, a novel atomization-assisted nonsolvent induced phase separation method, which is also highly efficient and very simple, has been developed. By using this method, a bicontinuous porous microfiltration membrane with robust micro-nano composite structure was obtained via commercially available polymers of polyacrylonitrile and polyvinylpyrrolidone. The formation mechanism of the micro-nano composite structure was proposed. The microphase separation of polyacrylonitrile and polyvinylpyrrolidone components during the atomization pretreatment process and the hydrogen bonding between polyacrylonitrile and polyvinylpyrrolidone molecules should have resulted in the nano-protrusions on the membrane skeleton. The membrane exhibits superhydrophilicity in air and superoleophobicity underwater. The membrane can separate both surfactant-free and surfactant-stabilized oil-in-water emulsions with high separation efficiency and permeation flux. With excellent antifouling property and robust microstructure, the membrane can easily be recycled for long-term separation. Furthermore, the scale-up verification from laboratory preparation to continuous production has been achieved. The simple, efficient, cost-effective preparation method and excellent membrane properties indicate the great potential of the developed membranes in practical applications.

关键词: atomization     nonsolvent induced phase separation     bicontinuous porous structure     micro-nano composite structure     oil-water separation    

Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic

Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 432-435 doi: 10.1007/s11705-012-1219-z

摘要: In the present work, a new preconcentration method of trace elements by adsorption onto a niobium wire has been developed for electrothermal atomization atomic absorption spectrometry (ETAAS) with a tungsten tube atomizer. Detection limits (pg·mL ) by this method combined with ETAAS were 45 for bismuth, 7.0 for cadmium, 20 for copper, 1.3 for gold, 36 for lead, 65 for manganese, 9.5 for rhodium and 19 for silver.

关键词: preconcentration     adsorption onto niobium wire     electrothermal atomization atomic absorption spectrometry     tungsten tube atomizer     trace elements    

aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1743-1750 doi: 10.1007/s11705-022-2184-9

摘要: The standard enthalpy of formation is an important predictor of the reaction heat of a chemical reaction. In this work, a high-precision method was developed to calculate accurate standard enthalpies of formation for polycyclic aromatic hydrocarbons based on the general connectivity based hierarchy (CBH) with the discrete correction of atomization energy. Through a comparison with available experimental findings and other high-precision computational results, it was found that the present method can give a good description of enthalpy of formation for polycyclic aromatic hydrocarbons. Since CBH schemes can broaden the scope of application, this method can be used to investigate the energetic properties of larger polycyclic aromatic hydrocarbons to achieve a high-precision calculation at the CCSD(T)/CBS level. In addition, the energetic properties of CBH fragments can be accurately calculated and integrated into a database for future use, which will increase computational efficiency. We hope this work can give new insights into the energetic properties of larger systems.

关键词: standard enthalpy of formation     polycyclic aromatic hydrocarbons     connectivity based hierarchy     high-precision calculation    

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 819-837 doi: 10.1007/s11705-021-2122-2

摘要: With the increasing demand for high-performance and safe fuels in aerospace propulsion systems, gelled fuels have attracted increasing attention. Because of their unique structure, gelled fuels exhibit the advantages of both solid and liquid fuels, such as high energy density, controllable thrust and storage safety. This review provides an overview on design, preparation and performance characterization of gelled fuels. The composition, preparation process and gelation mechanism of gelled high-energy-density fuels are described. Considering these aspects, the rheology and flow behavior of gelled fuels is summarized in terms of the shear thinning property, dynamic viscoelasticity and thixotropy. Moreover, the progress of atomization of gelled fuels is reviewed with a focus on the effect of atomizing nozzles. In addition, the experiments and theoretical models of single droplet combustion and combustor combustion are described. Finally, research directions for the development and application of gelled fuels are suggested.

关键词: gelled fuels     high-energy-density fuels     rheological properties     atomization     combustion    

Impingement of hollow cone spray on hot porous medium

ZHAO Zhiguo, XIE Maozhao

《能源前沿(英文)》 2008年 第2卷 第3期   页码 273-278 doi: 10.1007/s11708-008-0048-8

摘要: To have a good understanding of the formation of homogenous mixture in a porous medium engine, the interaction between hollow cone spray and hot porous medium was studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incorporated with an impingement model, heat transfer model and linearized instability sheet atomization (LISA) model to simulate the hollow cone spray. The reasonability of the impingement model and heat transfer model was validated. With a simple model to describe the structure of the porous medium, the interaction between hollow cone spray and hot porous medium was simulated under different ambient pressures and spray cone angles. Computational results show that the fuel spray could be divided into smaller ones, which provides conditions for the quick evaporation of fuel droplets and the mixing of fuel vapor with air. Differences in ambient pressure and spray cone angle affect the distribution of droplets in the porous medium.

关键词: improved version     simple     impingement     atomization     hollow    

Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine

《能源前沿(英文)》 2023年 第17卷 第5期   页码 664-677 doi: 10.1007/s11708-021-0787-3

摘要: The combustion characteristics and emission behaviors of RP-3 jet fuel were studied and compared to commercial diesel fuel in a single-cylinder compression ignition (CI) engine. Engine operational parameters, including engine load (0.6, 0.7, and 0.8 MPa indicating the mean effective pressure (IMEP)), the exhaust gas recirculation (EGR) rate (0%, 10%, 20%, and 30%), and the fuel injection timing (−20, −15, −10, and −5 ° crank angle (CA) after top dead center (ATDC)) were adjusted to evaluate the engine performances of RP-3 jet fuel under changed operation conditions. In comparison to diesel fuel, RP-3 jet fuel shows a retarded heat release and lagged combustion phase, which is more obvious under heavy EGR rate conditions. In addition, the higher premixed combustion fraction of RP-3 jet fuel leads to a higher first-stage heat release peak than diesel fuel under all testing conditions. As a result, RP-3 jet fuel features a longer ignition delay (ID) time, a shorter combustion duration (CD), and an earlier CA50 than diesel fuel. The experimental results manifest that RP-3 jet fuel has a slightly lower indicated thermal efficiency (ITE) compared to diesel fuel, but the ITE difference becomes less noticeable under large EGR rate conditions. Compared with diesel fuel, the nitrogen oxides (NOx) emissions of RP-3 jet fuel are higher while its soot emissions are lower. The NOx emissions of RP-3 can be effectively reduced with the increased EGR rate and delayed injection timing.

关键词: RP-3 jet fuel     diesel     engine     combustion     emissions    

Impacts of methanol fuel on vehicular emissions: A review

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1553-4

摘要:

● Methanol effectively reduces CO, HC, CO2, PM, and PN emissions of gasoline vehicles.

关键词: Methanol fuel     Vehicular emission     Emission reduction     Cleaner fuel     Gasoline substitute    

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 137-148 doi: 10.1007/s11708-011-0153-y

摘要: Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the kinetic-activity improvement on platinum- (Pt-) based cathode electrocatalysts for the oxygen reduction reaction (ORR). The origin of the limited ORR activity of Pt catalysts is discussed, followed by a review on the development of Pt alloy catalysts, Pt monolayer catalysts, and shape- and facet-controlled Pt-alloy nanocrystal catalysts. Mechanistic understanding is reviewed as well on the factors contributing to the enhanced ORR activity of these catalysts. Finally, future directions for PEMFC catalyst research are proposed.

关键词: proton exchange membrane fuel cells (PEMFCs)     cathode electrocatalysts     platinum     oxygen reduction reaction (ORR)    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 120-124 doi: 10.1007/s11465-007-0021-y

摘要: Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space-flight industry. Al-30Si and Al-40Si are fabricated with air-atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expansion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high-silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductivity varies between 104-140 W/(m " K); with the extrusion temperature, thermal expansion coefficient also increases but within 13?10 (at 100?C) and hermeticity of the material is high to 10 order of magnitude.

关键词: coefficient     hermeticity     temperature     relationship     air-atomization    

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

《能源前沿(英文)》 2017年 第11卷 第3期   页码 286-298 doi: 10.1007/s11708-017-0477-3

摘要: To significantly reduce the cost of proton exchange membrane fuel cells, platinum-group metal (PGM)-free cathode catalysts are highly desirable. Current M-N-C (M: Fe, Co or Mn) catalysts are considered the most promising due to their encouraging performance. The challenge thus has been their stability under acidic conditions, which has hindered their use for any practical applications. In this review, based on the author’s research experience in the field for more than 10 years, current challenges and possible solutions to overcome these problems were discussed. The current Edisonian approach (i.e., trial and error) to developing PGM-free catalysts has been ineffective in achieving revolutionary breakthroughs. Novel synthesis techniques based on a more methodological approach will enable atomic control and allow us to achieve optimal electronic and geometric structures for active sites uniformly dispersed within the 3D architectures. Structural and chemical controlled precursors such as metal-organic frameworks are highly desirable for making catalysts with an increased density of active sites and strengthening local bonding structures among N, C and metals. Advanced electrochemical and physical characterization, such as electron microscopy and X-ray absorption spectroscopy should be combined with first principle density functional theory (DFT) calculations to fully elucidate the active site structures.

关键词: oxygen reduction     fuel cells     cathode     nonprecious metal catalysts     carbon nanocomposites    

Renewable synthetic fuel: turning carbon dioxide back into fuel

《能源前沿(英文)》 2022年 第16卷 第2期   页码 145-149 doi: 10.1007/s11708-022-0828-6

标题 作者 时间 类型 操作

Numerical investigation of the effects of fuel spray type on the interaction of fuel spray and hot porous

ZHAO Zhiguo, XIE Maozhao

期刊论文

Spray characteristics and controlling mechanism of fuel containing CO

Zhen HUANG, Jin XIAO, Xinqi QIAO, Gaozhi JIANG, Yiming SHAO, Seiichi SHIGA, Yasuhiro DAISHO

期刊论文

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

期刊论文

Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic

Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI

期刊论文

aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization

期刊论文

Review on design, preparation and performance characterization of gelled fuels for advanced propulsion

期刊论文

Impingement of hollow cone spray on hot porous medium

ZHAO Zhiguo, XIE Maozhao

期刊论文

Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine

期刊论文

Impacts of methanol fuel on vehicular emissions: A review

期刊论文

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

Recent advances in cathode electrocatalysts for PEM fuel cells

Junliang ZHANG

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

期刊论文

Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells

Gang WU

期刊论文

Renewable synthetic fuel: turning carbon dioxide back into fuel

期刊论文